
Acc. Chem. Res. 1989,22, 77-82 77 

Liquid-Vapor Asymmetry at the Critical Point 

RAYMOND E. GOLDSTEIN* and ALBERTO PAROLA 

Laboratory of Atomic and Solid State  Physics and Materials Science Center, Cornell University, Ithaca, New York 14853 

Received January 22, 1988 (Revised Manuscript Received November 1, 1988) 

I. Introduction 
Much of our present understanding of the nature of 

the liquid-vapor critical point is based on the deep 
correspondence between second-order phase transitions 
in fluids and those in magnetic systems as exemplified 
by the Curie points of ferromagnets. As stressed first 
by Lee and Yang,l and later reinterpreted as the prin- 
ciple of universality,2 the relation between these systems 
rests on the isotropy and short-range nature of the in- 
terparticle potentials, the scalar character of their order 
parameters, and the spatial dimensionality. The ex- 
perimental verification of universality among fluids and 
ferromagnets is by now nearly unquestionable with 
regard to the most directly measurable types of quan- 
tities, the exponents characterizing mathematical 
anomalies in densities and response functions and ratios 
of the amplitudes of those an~malies .~ 

Yet, there has remained over the years a fundamental 
unresolved problem lying at  the heart of the fluid- 
magnet correspondence, centering on the validity of 
certain symmetry relations between thermodynamic 
properties in coexisting liquid and vapor phases close 
to the critical point. These relationships are rigorously 
present in the  pin-'/^ Ising ferromagnet as a conse- 
quence of the symmetries of its Hamiltonian, but no 
such exact relations exist in the Hamiltonian of a fluid. 
The study of this aspect of the thermodynamics of li- 
quids dates back in some sense to the last century, but 
until very recently, there has been a large gap between 
theoretical predictions and experimental observations. 

This Account reviews recent work4+ which we believe 
has shed new light on the fluid-magnet correspondence. 
These theoretical results arise from a proposed syn- 
thesis of approaches ranging from those of the classical 
van der Waals type to lattice-model calculations and 
field-theoretic methods and provide a consistent de- 
scription of new high-precision experimental data. 
Together, they suggest a possible basis for a fully 
quantitative microscopic theory of liquid-vapor critical 
phenomena in fluids. 
11. The Experiments 

It is now just over a century since the classic exper- 
iments of Cailletet and Mathiaslo demonstrated that as 
the liquid-vapor critical temperature Tc is approached 
along the saturated vapor pressure curve, the so-called 
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diameter, the mean of the densities p1 and pv of coex- 
isting liquid and vapor phases, appears to deviate from 
the critical density pc as a linear function of reduced 
temperature t (T, - T)/Tc,  as shown by the dashed 
line in the schematic Figure 1. This appears to occur 
despite the fact that the two branches of the coexistence 
curve each have power-law singularities, 

Pl,v 

Pc 
- 1 f Apt’ + Ait +... (2.1) 

where the exponent 0 = 1/3, A, is the amplitude of the 
asymptotic order parameter variation, (p1 - pv)/2pc 
AptB, and Al characterizes the diameter pd (p1 + 
Pv)/2Pc, 

Pd - 1 N A1t + ... (2.2) 

In contrast to the universal critical exponents like 0, 
the amplitudes Al and A, are nonuniversal; they de- 
pend on details of the molecular interactions. Univ- 
ersality would hold, however, for systems that possess 
pairwise additive conformal potentials and hence rig- 
orously obey a “law of corresponding states” in the sense 
described by Guggenheim.l’ 

The analyticity of &(t) in eq 2.2, known as the “law 
of the rectilinear diameter”, follows from any equation 
of state for which the free energy has an analytic ex- 
pansion in t and p - pc near the critical point. Such 
models predict = 1/2,  contrary to the nonclassical 
value seen in modern experiments and theory. Nev- 
ertheless, for decades, a linear diameter was observed 
in essentially all fluids studied, even at  the level of 
precision at  which nonclassical exponents are plainly 
apparent for the order parameter, specific heat, com- 
pressibility, etc. The apparent analyticity of the diam- 
eter is therefore distinct from the issue of the validity 
of mean field theory. 

Beginning in the early 19709, interest in this aspect 
of the critical behavior of fluids grew in the wake of a 
number of theoretical studies12-14 suggesting that the 
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Figure 1. Schematic illustration of the temperature-density 
diagram of a one-component fluid, showing the coexisting liquid 
and vapor densities p1 and p v  and the mean density p .  Analytic 
(dashed) and nonanalytic (dotted) diameters are shown. 

lack of perfect symmetry between liquid and vapor 
should modify the classical results (eq 2.1 and 2.2) to 
include a new singular term, 

pd - 1 E Al-,tl-u A1t + ... (2.3) 
Here, a ( ~ 0 . 1 1 )  is the exponent characterizing the 
power-law divergence of the specific heat C along the 
critical isochore; C - P. Equation 2.3 implies a critical 
density pc which differs from pd, that estimated by a 
linear extrapolation from large reduced temperatures 
(see Figure l), and it implies that the diameter itself 
actually has a horizontal tangent in the p - T plane. 
The closeness of 1 - a to unity makes the singularity 
very difficult to detect, but an early experiment by 
Weiner, Langley, and Ford15 in 1974 on SF6 found 
rather convincing evidence of its existence. Many 
subsequent experiments on other pure fluids and mix- 
tures failed to detect any anomaly, though, leaving the 
field in an awkward state, with theory providing no 
microscopic explanation of the factors that control the 
magnitude of symmetry breaking. 

The entire subject has had two rebirths in recent 
years: first, in 1985, with remarkable experiments by 
Jungst, Knuth, and Hense14 on the liquid-vapor equi- 
libria of the metals cesium and rubidium, and then, in 
1987, with high-precision experiments6i8 on neon and 
nitrogen by Pestak and Chan, and on ethane and 
ethylene by de Bruyn and Balzarini. These experiments 
finally revealed that singularities with the predicted 
critical exponent 1-a do indeed exist. Here, we con- 
centrate on the results and interpretation of the ex- 
periments on classical insulating fluids, for which the 
contact between theory and experiment is closest. 

Perhaps the most important aspect of the experi- 
ments6v8 on insulating fluids is the discovery that var- 
ious critical amplitudes exhibit a strong correlation 
with the molecular polarizability, or, equivalently (see 
below), with the critical temperature. Examples of 
these trends are shown in Figures 2-4. Figure 2a 
displays the coexistence curves of several insulating 
fluids in the critical region on a reduced scale. In order 
of increasing critical temperature, from 3He (T, = 3.31 
K) through N2 (126.2 K) to SF6 (318.7 K), it is clear that 
the breadth of the coexistence curve, and hence the 
amplitude A,, systematically increases. This is in 
marked contrast with the apparently universal behavior 

(14) Mermin, N.  D. Phys. Reu. Lett. 1971,26, 169; Ibid. 1971,26,957. 
(15) Weiner, J.; Langley, K. H.; Ford, N. C., J r .  Phys. Rev. Lett. 1974, 

32, 879. 

suggested by the less precise data in Guggenheim's fa- 
mous 1945 plot (Figure 2b). The diameters of some of 
the fluids in Figure 2a are arranged in order of in- 
creasing T,  in Figure 3, and again certain properties 
vary systematically. The diameter slope Al determined 
far from T, increases with the critical temperature of 
the fluid, as does the amplitude Al, of the anomaly (the 
"hook" in the data) near t = 0. Note also that the 
singularity always has the same sign; Al-, > 0. 

We have suggested that these observations are the 
key to understanding liquid-vapor asymmetries and 
have a r g ~ e d ~ - ~  that the above trends arise from the 
existence of a new energy scale in these systems, one 
different from that of the critical point itself, kBTc. 
That new energy scale is proposed to arise from 
three-body Axilrod-Teller16 (AT) interactions. While 
there are other microscopic origins of deviations from 
a law of corresponding states, such as variations in the 
detailed form of two-body potentials, quantum effects, 
and so on, we find that liquid-vapor symmetry appears 
to be particularly sensitive to three-body forces. 

We begin by recalling that in the simplest "one-level" 
approximation to the frequency-dependent atomic po- 
larizability a ( w )  of an atom, namely, a ( w )  = a(0)A2/(A2 
- w 2 ) ,  the long-range part of the attractive two-body 
dispersion force between atoms is $l(r) = -(3/4)hA- 
(u(0)2/r6. The classical or van der Waals theory of the 
critical point embodies the essential result that the 
thermal energy at the critical point scales with the 
Fourier transform of $1 at  zero momentum, kBT, - 
&(O)/ ( r3  - ~ A C X ( O ) ~ / C T ~ ,  with the critical density varying 
as pc - C T - ~ ,  u being a short-distance cutoff of the po- 
tential The same approximation to a ( w )  yields the 
AT potential for three particles at positions (rl,r2,r3), 
forming a triangle with vertex angles Oi, as 

9 3 COS o1 COS e2 cos e3 + 1 

r123r133r233 
(2.4) 

$AT(rlirZ,r3) = 16 h A 

The two most important characteristics of this inter- 
action are (i) that its amplitude scales with (static po- 
lari~ability)~ and (ii) that it is repulsive for the majority 
of the configurations of the triad. Our analysis relates 
(i) to the existence of a new energy scale and (ii) to the 
sign of the diameter anomaly. On purely dimensional 
grounds, we can see that the relative importance of 
triplet to pair interactions,  AT/$^, is given by the di- 
mensionless "critical polarizability product" a(O)p,, 
itself proportional to T,1I2. That is, systems with higher 
critical temperatures have relatively more important 
many-body interactions. The significance of this 
quantity as a perturbation parameter is demonstrated 
in Figure 4, where it is seen that the values of Al-a 
estimated from experiment vary linearly with a(O)p,. 
With these experimental observations in mind, let us 
now review the original theoretical predictions of di- 
ameter anomalies. 
111. Theoretical Background 

The Penetrable-Sphere Model and Decorated- 
Lattice Models. Introduced by Widom and Rowlin- 
son12 in 1970, the penetrable-sphere model was the first 
to suggest the presence of a singular diameter and 
shares a common mathematical mechanism with the 

(16) Axilrod, B. M.; Teller, E. J .  C h e n .  Phys. 1943, 11, 299. 
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Figure 2. Coexistence curves of several simple fluids in the critical region. Data in part a are from ref 8. Part b represents Guggenheim's 
corresponding-states plot, adapted from ref 11. Note the different scales in parts a and b. 
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Figure 3. Coexistence curve diameters of Ne, N2, C2H4, C2HB, 
and SF,, illustrating the larger slope at large t and larger amplitude 
singular anomaly at small t with increasing critical temperature. 
Reprinted with permission from Pestak, M. W.; Goldstein, R. E.; 
Chan, M. H. W.; de Bruyn, J. R.; Balzarini, D. A.; Ashcroft, N. 
W. Phys. Rev. B 1987,36,599. Copyright 1987 The American 
Institute of Physics. 

particular decorated-lattice models studied by Mermin14 
and others.17 As shown by Fisher,l8 these models be- 
long to a class whose thermodynamic properties may 
be mapped exactly onto those of simple Ising models. 
Their name derives from the existence of two classes 
of spins in the lattice: primary spins sir which reside 
at the vertices of the lattice and are coupled to each 
other with nearest-neighbor interactions, and secondary 
spins ui, which are located on the bonds between pri- 
mary sites and interact only with their nearest-neighbor 

(17) Mulholland, G. W.; Zollweg, J. A.; Levelt-Sengers, J. M. H. J. 

(18) Fisher, M. E. Phys. Reu. 1959, 113, 969. 
Chem. Phys. 1975,62, 2535. 
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Figure 4. Experimental and theoretical diameter anomaly am- 
plitudes versus the critical polarizability product. Dashed line 
is the theoretical prediction from ref 9. Circles denote amplitude 
estimates obtained from single power-law analysis of data closest 
to T,, squares from fits over a larger temperature range with an 
analytic background included. Estimates shown by diamonds 
include in addition a correction to scaling term. 

primary spins. In the penetrable-sphere model, these 
two classes of spins are replaced by two kinds of par- 
ticles that form ideal gases with respect to others of 
their species but interact through some short-range 
potential with opposite types. 

The mutual independence of the decorating spins ai 
implies that for any configuration of the si the trace over 
{q) in the "two-component" partition function may be 
performed separately and exactly, with the (si) acting 
as a spatially varying external field. Thus, the full 
partition function is reducible to that of a one-compo- 
nent system involving only the primary sites, with some 
effective Hamiltonian coupling only nearest neighbors. 
The important point is that this effective nearest- 
neighbor interaction has an explicit dependence on the 
one-body field of the original model, the external 
magnetic field H, which corresponds to the chemical 
potential in a fluid. This dependence is embodied in 
the generic relationship between the free energy F of 
the original model and that of the simple Ising model 
FI ,  

F({KJ,H) = FI[KI((KJ,H),HI(IKJ,H)] + G((K),H) (3.1) 
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where (Kj is the set of original spin-spin coupling con- 
stants in the model, and where the effective nearest- 
neighbor Ising couplings KI, magnetic field HI, and 
additive term G are all analytic functions of their ar- 
guments. The thermodynamic density of interest is the 
magnetization conjugate to  H, and one finds that the 
mean density on the coexistence surface has a term of 
the form (dFI/dKI)(dKI/dH). The first of these two 
factors is the dimensionless nearest-neighbor spin-spin 
correlation function of the Ising model, directly pro- 
portional to the internal energy; this is the quantity 
with a singularity of the form Pa. The amplitude of 
the diameter anomaly is therefore nonzero only if the 
effective spin-spin coupling depends on the bare ex- 
ternal field, that is, dKI/dH # 0. In the language of 
a fluid, this is equivalent to an “intermolecular potential 
that is a function of thermodynamic variables” l9 (here, 
chemical potential). In general, this phenomenon is 
known as “field mixing”. 

Phenomenological Scaling. In 1973, Rehr and 
Mermin20 generalized the scaling theory introduced by 
Widom21 through a simple change of variables analo- 
gous to that seen in the decorated-lattice models. They 
proposed that the pressure P near the critical point 
varies as 

(3.2) 

where Po is an analytic background term analogous to 
that called G in eq 3.1 and f is the universal scaling 
function, with r(t,h) and {(t,h) the two “scaling fields” 
which play the roles of the coupling KI and magnetic 
field HI in eq 3.1 near the critical point. It is assumed 
that 7 and C are analytic in the bare variables t and h - (p - pcoex)/kBTc, with p the chemical potential and 
pcoex(T) its value on the phase boundary. From eq 3.2, 
one finds that the density p = ( d P / d p ) T  has a singular 
term proportional to (dT/ah)71-a, a result completely 
equivalent to that found in the decorated-lattice models, 
with the crucial field-mixing derivative being &/ah. 

Field-Theoretic Analysis. Important progress in 
the study of liquid-vapor asymmetries in real fluids was 
made in 1981 by Nico11,22 who showed that certain 
symmetry-breaking terms in a Landau-Ginzburg- 
Wilson Hamiltonian 7 f f L ~ w  implied the existence of 
revised scaling variables. He considered a model in 
which 7 f L G w  = 7 f s  + a s A ,  a sum of “symmetric” and 
“asymmetric” parts, w being a dimensionless small pa- 
rameter. These two terms are the familiar fourth-order 
expansion in the local order parameter d x ) ,  

p(P,n = P o ( C , T )  -I- 72-a f ( f /786)  

Goldstein and Parola 

with t the deviation from the mean field critical tem- 
perature and h the external field, and a particular set 
of cubic and quintic operators, 

12 
1 

7 f A  = S d d x  ( - ;bcp2V2r$ + 

Application of certain fundamental identities obeyed 
by field-theoretic models shows that this model has a 

(19) Rowlinson, J. S. Mol. Phys. 1984, 52, 567. 
(20) Rehr, J. J.; Mermin, N. D. Phys. Rev. A 1973,8, 472. 
(21) Widom, B. J. Chem. Phys. 1965,43, 3898. 
(22) Nicoll, J. F. Phys. Rev .  A 1981, 24, 2203. 

scaling law equation of state like that postulated by 
Mermin and Rehr, eq 3.2, with the revised thermal 
scaling field T t + wh, to leading order in w. The 
relationship between the operators in 7fA and revised 
scaling variables has also been demonstrated in a re- 
normalization-group analysis by Nicoll and Zia.23 
While this relationship only holds for the particular 
linear combination of odd operators in eq 3.4, Reatto 
and Tau24 remarked that the cubic terms in a coarse- 
grained Hamiltonian for systems with three-body in- 
teractions are strongly reminiscent of the odd operators 
in eq 3.4, and that such potentials may enhance field 
mixing . 
IV. Many-Body Interactions at Criticality 

General Approach. In analyzing the consequences 
of weak many-body dispersion interactions on critical 
behavior, we have relied on thermodynamic perturba- 
tion theory. Consider a system governed by a Hamil- 
tonian 7f = So + w7f3 ,  with 7fo a sum of reference 
potentials, w a small parameter, and 7fY3 a sum of triplet 
potentials +. so itself is further partitioned into a sum 
of repulsive and attractive potentials, $o and &, re- 
spectively. The first-order change in the free energy 
from its value in the reference system isz5 
AF- 

3! 1 1 l d r l  dr2 dr3 + ... 
(4.1) 

where p J 3 )  is the triplet distribution function of the 
reference system. Three applications of this simple 
result, a van der Waals theory, lattice-gas models, and 
a Landau-Ginzburg-Wilson Hamiltonian for fluids, 
illustrate the role of three-body interactions in liquid- 
vapor asymmetries. 

Van der Waals Theory. The van der Waals (vdW) 
equation of state predicts that the diameter slope Al 
= 2/5, which is reasonably accurate for fluids like neon 
with T ,  I 40 K, suggesting it is a starting point for the 
application of eq 4.1. For N particles in a volume V at 
temperature T ,  the vdW Helmholtz free energy is 
modified to account for three-body interactions by in- 
cluding a mean field acting on each particle propor- 
tional to the square of the density,6i8 

where A is the thermal de Broglie wavelength and b the 
excluded volume, a and q being related to the trans- 
forms of the potentials with suitable short-range cutoffs; 
a = -P/2)&(0) and q = (‘/~)$(O,O). 

One finds from a Maxwell construction applied to eq 
4.2 near the critical point that three-body interactions 
do indeed introduce a new energy scale, with all critical 
amplitudes depending explicitly on the nonuniversal 
parameter x q /ab  - a(O)p,. For weak repulsive 
three-body interactions (0 < x << l), the diameter slope 
and order parameter amplitude both increase with x 
(and hence also with T,),  as in Figures 2 and 3. These 

(23) Nicoll, J. F.; Zia, R. K. P. Phys. Rev. E 1981,23, 6157. 
(24) Reatto, L.; Tau, M. Europhys. Lett. 1987, 3, 527. 
(25) See, e.g.: McQuarrie, D. A. Statistical Mechanics; Harper & Row: 

New York, 1973; Chapter 14. 
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and other semiquantitative correlations with experi- 
ment lend support to the conjectured role of triplet 
interactions. 

The van der Waals model actually contains the notion 
of an effective, state-dependent potential in the sense 
that with the definitions of a and q we may consider 
the free energy in eq 4.2 to arise from a purely pair 
potential Hamiltonian with an effective interaction 

a form analogous to that found by Casanova et by 
more sophisticated techniques. If viewed as a virial 
expansion, p may be replaced by the fugacity z ,  giving 
a potential that depends on temperature and chemical 
potential, precisely what appears in decorated-lattice 
and penetrable-sphere models. This argument, while 
not immediately applicable to the critical region, is 
supported by more rigorous calculations for lattice 
models. 

Lattice Models. We have studied6y7 the effects of 
weak three-body interactions on lattice-gas Hamilto- 
nians which in their absence display exact liquid-vapor 
symmetry and have found that the presence of revised 
scaling variables may be established rigorously. These 
model Hamiltonians are of the form 

1 1 
% = - C Ki,ninj + - C Lijkninjnk (4.4) 

2! i # j  3! i # j # k  

where ni = 0 , l  is the occupation variable of site i, and 
the symmetry-breaking three-site interactions Lijk are 
assumed small relative to the two-body interactions Kij 
(10). 

From first-order perturbation theory, we may write 
the thermodynamic potential Q, viewed as a functional 
of the two- and three-body interactions, in terms of that 
of the reference system Do[z,K] Q[z,K,L=O] as 

1 
Q[z,K,L] = Qo[z,K] + - C LijkpJ3)(ijk) + ... (4.5) 

where pJ3)(ijk) is the reference three-body correlation 
function for the sites i, j ,  and k. To see how revised 
scaling variables arise from triplet interactions, we ex- 
amine a functional expansion of the free energy of a 
perturbed reference system, with fugacity z ' =  z + Az 
and potential K' K + AK, 

31 i j , k  

Az 
Qo[z',Kq Qo[z,K] - kBTZpo(')(i)- + 

i Z 
,CpJ2)(ij)AK(ij) 1 + ... (4.6) 

i j  

For a class of compact triplet and higher body in- 
teractions, an equivalence between eq 4.5 and 4.6 may 
be established by means of certain exact correlation 
function identities which relate the pJ3) and the lower 
order pair and singlet distributions p,-,@) and pO(l). These 
"Kirkwood-Salsburg" identities2' reduce in the lattice 
models to a finite set of linear algebraic relations among 
the p0("), with the fugacity z and the temperature as 
parameters. The resultant free-energy map, precisely 

(26) Casanova, G.; Dulla, R. J.; Jonah, D. A.; Rowlinson, J. S.; Saville, 

(27) Kirkwood, J. G.; Salsburg, Z. W. Discuss. Faraday SOC. 1953,15, 
G. Mol. Phys. 1970,18, 689. 

28. 
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of the decorated-lattice form (3.1), relates the thermo- 
dynamic properties of a system with symmetry-breaking 
many-body interactions to that of a liquid-vapor sym- 
metric system. It also shows the relevant field-mixing 
derivatives to be linear in the quantities Lijk/kBTc, and 
therefore scaling as T,'I2 for dispersion interactions, and 
that the anomaly has a positive amplitude, as in ex- 
periment, for repulsive triplet interactions like the 
Axilrod-Teller potential. The variations of other crit- 
ical amplitudes with the strength of the triplet poten- 
tials follow closely those found in the van der Waals 
theory. 

Landau-Ginzburg-Wilson Model. While the 
field-theoretic connection between revised scaling var- 
iables and certain operators in a Landau-Ginzburg- 
Wilson Hamiltonian provides key insights into the or- 
igins of liquid-vapor asymmetry, the precise relation- 
ship between those operators and the Hamiltonian of 
a fluid was not clear. We have foundg that the results 
of Hubbard and Schofield,% showing the formal relation 
between the operators in a Landau-Ginzburg-Wilson 
model and those of a microscopic Hamiltonian of a 
fluid, may be carried through in detail to arrive at  a 
microscopic expression for the field-mixing operator. 
In addition, such a formal development allows for 
contact to be made with a variety of powerful field- 
theoretic techniques in critical phenomena, such as the 
renormalization group. 

The derivation proceeds from the exact relation be- 
tween the grand canonical partition function ," of a fluid 
at temperature T and chemical potential p and that of 
a reference system Eo at T and po, 

E(T,p,V) = Eo(T,p0,V)(exp[-P7f1 + P(P - PO)N)O 
(4.7) 

where the full Hamiltonian is 7f = 7f0 + 7fl. The first 
application of this is to the case in which 7f1 contains 
the attractive part of the pair interactions, with 7fo a 
sum of hard-sphere interactions. By rewriting the ar- 
gument of the exponential in eq 4.7 in momentum space 
as a quadratic form in the Fourier components of the 
density, it is seen to be of a general Gaussian form. As 
such, a Hubbard-Stratonovich transformation2 may be 
applied to obtain the free energy in terms of a func- 
tional integral over continuous fields, the Hamiltonian 
containing, among other terms, all of the operators in 
Nicoll's model, eq 3.3 and 3.4. 

The crucial points in the above transformations are 
(i) that the operators t, b, u, etc., may be expressed 
exactly in terms of the pair potential &(k) and certain 
n-particle direct correlation functions of the reference 
system and (ii) that the properties of a hard-sphere fluid 
are known sufficiently well that a detailed calculation 
of the magnitude of the field-mixing operator is pos- 
sible. Renormalization-group and scaling arguments 
can be used to show that in fact the dominant contri- 
bution to field mixing comes from the density derivative 
of bz = (1/3)Sd3r r2Cz(r), the second moment of the 
two-particle direct correlation function C2. Note that 
Nicoll's two LGW operators combine to give a gra- 
dient-squared coefficient of b(1 + 204), which is nothing 
but a Taylor expansion of the density dependence of 
b2. Thus, the derivative (db2/dp) is the intrinsically 
small quantity that breaks liquid-vapor symmetry in 

(28) Hubbard, J.; Schofield, P. Phys. Let t .  1972,40A, 245. 
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fluids. To put this in perspective, that in the 
theory of fluids with a weakly inhomogeneous density 
p(r) the free energy density f ( r )  is of the form 

1 
f ( r )  f h ( P b ) )  + pVP(r) l2  + * * a  (4.8) 

where f h  is that of a homogeneous fluid, and the coef- 
ficient of the gradient term (analogous to b in eq 3.3) 
is just (kBT/2)b,. Within the interpretation of van der 
Waals,29 for instance, m is proportional instead to the 
second moment of the pair potential, rather than of C2, 
and hence is independent of density, implying no field 
mixing. In reality, the weak density dependence of C2 
for pair-potential fluids gives rise to the small residual 
value of AI-, seen in Figure 4 in the limit a(O)p, - 0. 

Three-body interactions like the Axilrod-Teller po- 
tential may be absorbed into the reference system 
properties by means of a low-order perturbation ex- 
pansion analogous to that in eq 4.3, giving rise to a 
linear density dependence t o  the  range of C2, and 
hence a linear variation in the amplitude The 
resulting parameter-free theoretical prediction of the 
variation of AI, with the critical polarizability product, 
based on a hard-sphere reference system, is shown in 
Figure 4 to be in semiquantitative agreement with the 
available experimental data. 

Goldstein and Parola 

(29) Rowlinson, J. S.; Widom, B. Molecular Theory of Capillarity; 
Oxford: New York, 1982; p 16. 

V. Discussion 
Although the discussion in this review has been con- 

fined to  critical phenomena in insulating fluids, it was 
in fact motivated primarily by the extraordinary ex- 
periments of the Marburg group4 on metallic fluids, 
which exhibit extreme degrees of liquid-vapor asym- 
metry and strong diameter anomalies. These fluids are 
fundamentally distinct from insulators in that the in- 
terparticle potentials are not quantities related to in- 
trinsically atomic properties, but rather depend strongly 
on the nature of the electron gas which screens the 
Coulombic interaction. In the neighborhood of the 
metal-nonmetal transition which, for the alkali metals, 
occurs at a density close to that of the critical point,4 
one might expect any "effective" potentials between 
ions to be strong functions of the thermodynamic state. 
In light of the results presented here, the large diameter 
anomalies might then be e ~ p e c t e d , ~  but it remains an 
important open problem to develop a microscopic the- 
ory of critical phenomena in systems with such rapidly 
changing electronic structure as metallic fluids. 
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